1-3تمييز متوازي الاضلاع
محتويات
محتويات
١ متوازي الأضلاع
٢ مساحة متوازي الأضلاع
٣ محيط متوازي الأضلاع
٤ كيفيّة رسم متوازي
الأضلاع متوازي الأضلاع متوازي الأضلاع أحد الأشكال الهندسيّة الرُّباعية الأضلاع؛ فله أربعة أضلاعٍ كلّ ضلعين متقابلين متطابقين ومتوازيين معاً أو متطابقين أو متوازيين فقط، وله أربعة زوايا، ويبلغ مجموع زوايا متوازي الأضلاع 360° كأيّ شكلٍ رُباعيٍّ، وقياس كلّ زاويتين متقابلتين متساويتين، وله قطران يتقاطعان في منتصف الشكل وينصفان بعضهما البعض؛ فكل قُطرٍ يصل بين الزاويتين المتقابلتين، ومن خصائص متوازي الأضلاع أنْ تكون كلّ زاويتين واقعتين على ضلعٍ واحدٍ مجموعهما 180°، ويُطلق على متوازي الأضلاع اسمٌ آخر هو شبيه المعين. مساحة متوازي الأضلاع متوازي الأضلاع من الأشكال الثنائيّة الأبعاد؛ فيُرسم في المستوى الديكارتيّ على محورين هما المحور السينيّ والمحور الصاديّ، وكل شكلٍ ثنائي الأبعاد له مساحةٌ وقد اشتُقت مساحة متوازي الأضلاع من مساحة كلٍ من المستطيل والمثلث؛ فمتوازي الأضلاع لو جزّأ إلى جزأين هما المثلث والمستطيل، ليستنتج علماء الرياضيات القانون التالي: مساحة متوازي المستطيلات= طول القاعدة× طول الارتفاع السَّاقط على القاعدة مثال للتوضيح: متوازي أضلاع طول أحد أضلاعه 4 سم، وطول الضلع الآخر 5.5 سم، احسب مساحة متوازي الأضلاع؟ الحل: نحتاج أولاً إلى رسم الشكل على الورق بالأبعاد المُعطاة في السؤال. نقوم باسقاط عمود من طرف الزاوية العُليا للشكل على الخط الأفقيّ الذي يُمثل القاعدة للشكل. باستخدام المسطرة نقيس طول هذا الإرتفاع، في هذا المِثال يساوي 3 سم. نطبق قانون المساحة= طول القاعدة× الارتفاع. المساحة= 4×3. المساحة= 12 سم مربع.
٢ مساحة متوازي الأضلاع
٣ محيط متوازي الأضلاع
٤ كيفيّة رسم متوازي
الأضلاع متوازي الأضلاع متوازي الأضلاع أحد الأشكال الهندسيّة الرُّباعية الأضلاع؛ فله أربعة أضلاعٍ كلّ ضلعين متقابلين متطابقين ومتوازيين معاً أو متطابقين أو متوازيين فقط، وله أربعة زوايا، ويبلغ مجموع زوايا متوازي الأضلاع 360° كأيّ شكلٍ رُباعيٍّ، وقياس كلّ زاويتين متقابلتين متساويتين، وله قطران يتقاطعان في منتصف الشكل وينصفان بعضهما البعض؛ فكل قُطرٍ يصل بين الزاويتين المتقابلتين، ومن خصائص متوازي الأضلاع أنْ تكون كلّ زاويتين واقعتين على ضلعٍ واحدٍ مجموعهما 180°، ويُطلق على متوازي الأضلاع اسمٌ آخر هو شبيه المعين. مساحة متوازي الأضلاع متوازي الأضلاع من الأشكال الثنائيّة الأبعاد؛ فيُرسم في المستوى الديكارتيّ على محورين هما المحور السينيّ والمحور الصاديّ، وكل شكلٍ ثنائي الأبعاد له مساحةٌ وقد اشتُقت مساحة متوازي الأضلاع من مساحة كلٍ من المستطيل والمثلث؛ فمتوازي الأضلاع لو جزّأ إلى جزأين هما المثلث والمستطيل، ليستنتج علماء الرياضيات القانون التالي: مساحة متوازي المستطيلات= طول القاعدة× طول الارتفاع السَّاقط على القاعدة مثال للتوضيح: متوازي أضلاع طول أحد أضلاعه 4 سم، وطول الضلع الآخر 5.5 سم، احسب مساحة متوازي الأضلاع؟ الحل: نحتاج أولاً إلى رسم الشكل على الورق بالأبعاد المُعطاة في السؤال. نقوم باسقاط عمود من طرف الزاوية العُليا للشكل على الخط الأفقيّ الذي يُمثل القاعدة للشكل. باستخدام المسطرة نقيس طول هذا الإرتفاع، في هذا المِثال يساوي 3 سم. نطبق قانون المساحة= طول القاعدة× الارتفاع. المساحة= 4×3. المساحة= 12 سم مربع.
تعليقات
إرسال تعليق